Specific alterations of U1-C protein or U1 small nuclear RNA can eliminate the requirement of Prp28p, an essential DEAD box splicing factor.

نویسندگان

  • J Y Chen
  • L Stands
  • J P Staley
  • R R Jackups
  • L J Latus
  • T H Chang
چکیده

While some members of the ubiquitous DExD/H box family of proteins have RNA helicase activity in vitro, their roles in vivo remain virtually unknown. Here, we show that the function of an otherwise essential DEAD box protein, Prp28p, can be bypassed by mutations that alter either the protein U1-C or the U1 small nuclear RNA. Further analysis suggests that the conserved L13 residue in the U1-C protein makes specific contact to stabilize the U1 snRNA/5' splice site duplex in the prespliceosome, and that Prp28p functions to counteract the stabilizing effect of the U1-C protein, thereby promoting the dissociation of the U1 small nuclear ribonucleoprotein particle from the 5' splice site. Thus, in addition to unwinding RNA, the DExD/H box proteins may affect RNA-RNA rearrangements by antagonizing specific RNA-stabilizing proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A targeted bypass screen identifies Ynl187p, Prp42p, Snu71p, and Cbp80p for stable U1 snRNP/Pre-mRNA interaction.

To understand how DEXD/H-box proteins recognize and interact with their cellular substrates, we have been studying Prp28p, a DEXD/H-box splicing factor required for switching the U1 snRNP with the U6 snRNP at the precursor mRNA (pre-mRNA) 5' splice site. We previously demonstrated that the requirement for Prp28p can be eliminated by mutations that alter either the U1 snRNA or the U1C protein, s...

متن کامل

An RNA switch at the 5' splice site requires ATP and the DEAD box protein Prp28p.

Pre-mRNA splicing requires dramatic RNA rearrangements hypothesized to be catalyzed by ATP-dependent RNA unwindases of the DExD/H box family. In a rearrangement critical for the fidelity of 5' splice site recognition, a base-pairing interaction between the 5' splice site and U1 snRNA must be switched for a mutually exclusive interaction between the 5' splice site and U6 snRNA. By lengthening th...

متن کامل

Genetic interactions of conserved regions in the DEAD-box protein Prp28p.

The yeast PRP28 g ene has been implicated in nuclear precursor messenger RNA (pre-mRNA) splicing, a two-step reaction involved in a multitude of RNA structural alterations. Prp28p, the gene product of PRP28 , is a member of the evolutionarily conserved DEAD-box proteins (DBPs). Members of DBPs are involved in a variety of RNA-related biochemical processes, presumably by their putative RNA helic...

متن کامل

Yeast U1 snRNP-pre-mRNA complex formation without U1snRNA-pre-mRNA base pairing.

Base pairing between the 5' end of U1 snRNA and the conserved 5' splice site of pre-mRNA is important for commitment complex formation in vitro. However, the biochemical mechanisms by which pre-mRNA is initially recognized by the splicing machinery is not well understood. To evaluate the role of this base pairing interaction, we truncated U1 snRNA to eliminate the RNA-RNA interaction and surpri...

متن کامل

The U1 snRNP-associated factor Luc7p affects 5′ splice site selection in yeast and human

yLuc7p is an essential subunit of the yeast U1 snRNP and contains two putative zinc fingers. Using RNA-protein cross-linking and directed site-specific proteolysis (DSSP), we have established that the N-terminal zinc finger of yLuc7p contacts the pre-mRNA in the 5' exon in a region close to the cap. Modifying the pre-mRNA sequence in the region contacted by yLuc7p affects splicing in a yLuc7p-d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cell

دوره 7 1  شماره 

صفحات  -

تاریخ انتشار 2001